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Gliederung des Kurses

1. Einführung (Physikalische Größen, Einheiten)
2. Das elektrische Feld (Ladungen, Kräfte, Felder, Potential, Spannung, Kapazität,

Kondensatoren)
3. Gleichstrom (Stromstärke, Widerstand, Stromkreisberechnungen, Energie, Leistung)
4. Magnetismus (Feld in Vakuum und Materie, Kräfte, magnetischer Kreis)
5. Elektromagnetische Induktion (Induktion, Selbstinduktion, Energie)
6. Wechselstrom (Komplexe Wechselstromrechnung, Schaltungen, Leistung)
7. Drehstrom (Dreiphasensystem)
8. Schaltvorgänge an Kapazitäten und Induktivitäten



Elektrotechnik – Straub Wechselstrom

Wechselstrom

• Grundlegende Begriffe und Definitionen
• Komplexe Wechselstromrechnung
• Wechselstromwiderstände
• Grundschaltungen linearer Wechselstromwiderstände
• Leistung im Wechselstromkreis (Blindleistung, Wirkleistung, Scheinleistung)

Wechselstrom: Grundlagen

Periodische Größen:

• Sich zeitlich wiederholende physikalische Größen
• Periodendauer 𝑇 → 𝑢(𝑡) = 𝑢(𝑡 + 𝑇 )
• Frequenz: 𝑓 = 1

𝑇 , Kreisfrequenz: 𝜔 = 2𝜋𝑓

Wechselgrößen:

Periodische elektrische Größen mit verschwindendem arithmetischem Mittelwert
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Wechselgrößen: Eigenschaften

Fourier-Analyse: Jede Wechselgröße kann als Überlagerung von Sinusvorgängen dargestellt
werden

𝑎(𝑡) =
∞

∑
𝑛=1

̂𝐴𝑛 ⋅ sin(𝑛 ⋅ 𝜔𝑡 + 𝜑𝑛)

+79.7 +133 +266 x

-250

-50

+50

+250

y

Arithmetischer Mittelwert

Definition:
𝑎 = 1

𝑇 ⋅ ∫
𝑡0+𝑇

𝑡0

𝑎(𝑡) 𝑑𝑡

Für sinusförmige Wechselgrößen:

𝑎(𝑡) = ̂𝐴 ⋅ sin(𝜔 ⋅ 𝑡 + 𝜑𝑎)

Gilt:
𝑎 = 0

Der arithmetische Mittelwert einer sinusförmigen Wechselgröße ist immer null.
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Gleichrichtwert

Definition:
|𝑎| = 1

𝑇 ⋅ ∫
𝑡0+𝑇

𝑡0

|𝑎(𝑡)| 𝑑𝑡

Für sinusförmige Wechselgrößen:

|𝑎| = 2
𝜋 ⋅ ̂𝐴 ≈ 0,637 ⋅ ̂𝐴

Der Gleichrichtwert entspricht dem Mittelwert des Betrags der Wechselgröße.

Effektivwert: Definition

Physikalischer Hintergrund:

• Derjenige Wert einer Wechselgröße, der in seiner Wirkung bei Energieumformung einem
Gleichstrom entspricht

Beispiel:

𝑊el = 𝐼2 ⋅ 𝑅 ⋅ 𝑇 != ∫
𝑇

0
𝑖2(𝑡) ⋅ 𝑅 𝑑𝑡

⇒ 𝐼 ≡ 𝐼eff = √ 1
𝑇 ⋅ ∫

𝑇

0
𝑖2(𝑡) 𝑑𝑡

Allgemeine Definition:

𝐴eff =
√√
⎷

1
𝑇 ⋅ ∫

𝑡0+𝑇

𝑡0

𝑎2(𝑡) 𝑑𝑡

Effektivwert für Sinusschwingungen

Für sinusförmige Wechselgrößen:

𝑎(𝑡) = ̂𝐴 ⋅ sin(𝜔 ⋅ 𝑡 + 𝜑𝑎)

Herleitung:

𝐴eff = √ 1
𝑇 ⋅ ∫

𝑇

0
̂𝐴2 ⋅ sin2(𝜔 ⋅ 𝑡) 𝑑𝑡
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Ergebnis:

𝐴eff =
̂𝐴√
2

≈ 0,707 ⋅ ̂𝐴

Effektivwert: Beispiele

Netzspannung:

• 𝑈eff = 230 V �
• ̂𝑈 =

√
2 ⋅ 𝑈eff = 325 V �

Haushaltssicherung:

• 𝐼eff = 16 A �
• ̂𝐼 =

√
2 ⋅ 𝐼eff = 22,6 A �

Der Effektivwert wird von Messgeräten angezeigt!

Zusammenfassung: Kennwerte von Wechselgrößen

Kennwert Definition Formel Für Sinusfunktion

Arithmetischer
Mittelwert

Zeitlicher Mittelwert
über eine Periode

𝑎 = 1
𝑇 ⋅

∫𝑡0+𝑇
𝑡0

𝑎(𝑡) 𝑑𝑡
𝑎 = 0

Gleichrichtwert Mittelwert des
Betrags

‖𝑎‖ = 1
𝑇 ⋅

∫𝑡0+𝑇
𝑡0

‖𝑎(𝑡)‖ 𝑑𝑡
‖𝑎‖ = 2

𝜋 ⋅ ̂𝐴 ≈ 0,637 ⋅ ̂𝐴

Effektivwert Quadratischer
Mittelwert

𝐴eff =
√ 1

𝑇 ⋅ ∫𝑡0+𝑇
𝑡0

𝑎2(𝑡) 𝑑𝑡
𝐴eff = ̂𝐴√

2 ≈ 0,707 ⋅ ̂𝐴

5



Elektrotechnik – Straub Wechselstrom

Notationskonvention

In diesem Kapitel werden die zeitabhängigen Wechselgrößen mit Kleinbuchstaben bezeichnet:

• 𝑢(𝑡): Spannung
• 𝑖(𝑡): Strom

Großbuchstaben stehen für die zugehörigen Amplituden:

• ̂𝑈 : Spannungsamplitude
• ̂𝐼 : Stromamplitude

Zeigerdarstellung

Sinusförmige Wechselgrößen können als rotierende Zeiger in der komplexen Ebene dargestellt
werden.

Zeigereigenschaften:

• Winkelgeschwindigkeit: 𝜔 = 2𝜋𝑓
• Länge: ̂𝑈 = 𝑈max (Amplitude)
• zum Zeitpunkt 𝑡 = 0: 𝜑𝑢

Komplexe Darstellung

Um Berechnungen zu vereinfachen, können Wechselgrößen als komplexe Größen dargestellt
werden. Anstatt mit trigonometischen Funktionen zu rechnen, kann dann die
Exponentialfunktion verwendet werden.
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Zeitabhängige komplexe Spannung:

𝑢(𝑡) = ̂𝑈 ⋅ 𝑒𝑗(𝜔𝑡+𝜑𝑢) = ̂𝑈 ⋅ 𝑒𝑗𝜔𝑡 ⋅ 𝑒𝑗𝜑𝑢 = ̂𝑈 𝑒𝑗𝜑𝑢⏟
Festzeiger 𝑈

𝑒𝑗𝜔𝑡

⏟⏟⏟⏟⏟⏟⏟
Drehzeiger

= 𝑈 𝑒𝑗𝜔𝑡

Reale Zeitfunktion:
𝑢(𝑡) = Re 𝑢(𝑡) = ̂𝑈 ⋅ cos(𝜔𝑡 + 𝜑𝑢)

Komplexe Zahlen: Grundlagen

Imaginäre Einheit (in der Elektrotechnik zur Unterscheidung von Strom 𝑖(𝑡) als 𝑗 notiert):

𝑗 =
√

−1, 𝑗2 = −1

Komplexe Zahl:
𝑧 = 𝑎 + 𝑗𝑏

mit Realteil 𝑎 = Re 𝑧 und Imaginärteil 𝑏 = Im 𝑧

Euler’sche Formel

Euler’scher Satz:
𝑒𝑗𝜑 = cos(𝜑) + 𝑗 sin(𝜑)

Wichtige Spezialfälle:

• 𝑒𝑗0 = 1
• 𝑒𝑗𝜋/2 = 𝑗
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• 𝑒𝑗𝜋 = −1
• 𝑒𝑗3𝜋/2 = −𝑗
• 𝑒𝑗2𝜋 = 1

Im

Re

0

1

i

cos φ

φ

sin φ

eiφ= cos φ + i sin φ

Darstellungsformen

Komponentenform (kartesisch):
𝑍 = 𝑅 + 𝑗𝑋

Polarform (Exponentialform):

𝑍 = |𝑍| ⋅ 𝑒𝑗𝜑 = 𝑍 ⋅ 𝑒𝑗𝜑

Umrechnung:

• Betrag: 𝑍 = |𝑍| =
√

𝑅2 + 𝑋2

• Phase: 𝜑 = arctan (𝑋
𝑅 )

• Realteil: 𝑅 = 𝑍 ⋅ cos(𝜑)
• Imaginärteil: 𝑋 = 𝑍 ⋅ sin(𝜑)

Konjugiert komplexe Zahl

Konjugiert komplexe Zahl 𝑍∗:
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𝑍 = 𝑅 + 𝑗𝑋 ⇒ 𝑍∗ = 𝑅 − 𝑗𝑋

𝑍 = 𝑍 ⋅ 𝑒𝑗𝜑 ⇒ 𝑍∗ = 𝑍 ⋅ 𝑒−𝑗𝜑

Eigenschaften:

• 𝑍 ⋅ 𝑍∗ = |𝑍|2 = 𝑍2

• Re 𝑍 = 𝑍 + 𝑍∗

2

Addition und Subtraktion

In Komponentenform:

𝑍 = 𝑍1 ± 𝑍2 = (𝑅1 ± 𝑅2) + 𝑗(𝑋1 ± 𝑋2)

In Polarform: Umrechnung in Komponentenform notwendig

𝑍 = 𝑍1 ⋅ 𝑒𝑗𝜑1 ± 𝑍2 ⋅ 𝑒𝑗𝜑2 = (𝑍1 cos 𝜑1 ± 𝑍2 cos 𝜑2) + 𝑗(𝑍1 sin 𝜑1 ± 𝑍2 sin 𝜑2)

Addition und Subtraktion erfolgen am einfachsten in Komponentenform!

Multiplikation

In Polarform:
𝑍 = 𝑍1 ⋅ 𝑍2 = 𝑍1 ⋅ 𝑒𝑗𝜑1 ⋅ 𝑍2 ⋅ 𝑒𝑗𝜑2 = 𝑍1 ⋅ 𝑍2 ⋅ 𝑒𝑗(𝜑1+𝜑2)

Beträge multiplizieren, Phasen addieren!

In Komponentenform:
𝑍 = (𝑅1 + 𝑗𝑋1) ⋅ (𝑅2 + 𝑗𝑋2)

= (𝑅1𝑅2 − 𝑋1𝑋2) + 𝑗(𝑅1𝑋2 + 𝑅2𝑋1)
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Division

In Polarform:
𝑍 = 𝑍1

𝑍2
= 𝑍1 ⋅ 𝑒𝑗𝜑1

𝑍2 ⋅ 𝑒𝑗𝜑2
= 𝑍1

𝑍2
⋅ 𝑒𝑗(𝜑1−𝜑2)

Beträge dividieren, Phasen subtrahieren!

In Komponentenform: Erweitern mit konjugiert komplexem Nenner

𝑍1
𝑍2

= 𝑅1 + 𝑗𝑋1
𝑅2 + 𝑗𝑋2

⋅ 𝑅2 − 𝑗𝑋2
𝑅2 − 𝑗𝑋2

= (𝑅1𝑅2 + 𝑋1𝑋2) + 𝑗(𝑅2𝑋1 − 𝑅1𝑋2)
𝑅2

2 + 𝑋2
2
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� Gruppenarbeit: Spannung × Strom

Gegeben:

• Spannung: 𝑢(𝑡) = 325 V ⋅ cos(𝜔𝑡)
• Strom: 𝑖(𝑡) = 10 A ⋅ sin(𝜔𝑡)

Aufgaben: 1. Zeichnen Sie beide Größen als Zeiger im Zeigerdiagramm 2. Stellen Sie 𝑈 und 𝐼
in kartesischer Form (𝑎 + 𝑗𝑏) dar 3. Wandeln Sie beide um in Polarform (𝑍 ⋅ 𝑒𝑗𝜑) 4.
Berechnen Sie das Produkt 𝑈 ⋅ 𝐼∗ in beiden Darstellungen 5. Vergleichen Sie die Ergebnisse
und diskutieren Sie: Was fällt auf?

Hinweis: sin(𝜔𝑡) = cos(𝜔𝑡 − 90°)
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Wechselstromwiderstände

Grundelemente im Wechselstromkreis

Die drei Grundelemente im Wechselstromkreis sind:

• Ohmscher Widerstand R
• Kapazität C
• Induktivität L

Ohmscher Widerstand

Grundgleichung:
𝑢 = 𝑅 ⋅ 𝑖

Spannungs- und Stromverlauf:

𝑢 = ̂𝑈 ⋅ sin(𝜔 ⋅ 𝑡 + 𝜑𝑢)

𝑖 = ̂𝐼 ⋅ sin(𝜔 ⋅ 𝑡 + 𝜑𝑖)

Mit 𝑢 = 𝑅 ⋅ 𝑖 folgt:
̂𝑈 ⋅ sin(𝜔 ⋅ 𝑡 + 𝜑𝑢) = 𝑅 ⋅ ̂𝐼 ⋅ sin(𝜔 ⋅ 𝑡 + 𝜑𝑖)

⇒ ̂𝑈 = 𝑅 ⋅ ̂𝐼 , 𝜑𝑢 = 𝜑𝑖

Bei ohmschen Widerständen sind Strom und Spannung in Phase.
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Leistung am ohmschen Widerstand

Momentanleistung (für 𝜑𝑢 = 𝜑𝑖 = 0):

𝑝(𝑡) = 𝑢(𝑡) ⋅ 𝑖(𝑡) = ̂𝑈 ⋅ sin(𝜔𝑡) ⋅ ̂𝐼 ⋅ sin(𝜔𝑡)

= ̂𝑈 ⋅ ̂𝐼 ⋅ sin2(𝜔𝑡) = ̂𝑈 ⋅ ̂𝐼 ⋅ 1
2 ⋅ (1 − cos(2𝜔𝑡)) ≥ 0

Mittlere Leistung am ohmschen Widerstand

Berechnung:

𝑝 = 1
𝑇 ⋅ ∫

𝑇

0
𝑝(𝑡) 𝑑𝑡

= 1
𝑇 ⋅ 1

2 ⋅ ̂𝑈 ⋅ ̂𝐼 ⋅ ∫
𝑇

0
(1 − cos(2𝜔𝑡)) 𝑑𝑡

=
̂𝑈 ⋅ ̂𝐼

2 ⋅ 𝑇 ⋅ [𝑡 − 1
2 ⋅ 𝜔 ⋅ sin(2𝜔𝑡)]

𝑇

0

=
̂𝑈 ⋅ ̂𝐼
2 =

̂𝑈√
2

⋅
̂𝐼√
2

= 𝑈eff ⋅ 𝐼eff

Leistung wird ständig verbraucht → Wirkwiderstand
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Wirkleistung und Effektivwerte

Beispiel einphasiges Laden von E-Autos

Ein Elektrofahrzeug wird mit (einphasigem) Wechselstrom bei 𝑈eff = 230 V und 𝐼eff = 16 A
geladen.

Berechnung der Wirkleistung:

𝑃 = 𝑈eff ⋅ 𝐼eff = 230 V ⋅ 16 A = 3680 W = 3,7 kW

• Ladedauer für 40-kWh-Akku: ca. 11 Stunden
• Falls 𝐼eff = 32 A → 𝑃 ≈ 7,4 kW
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Kondensator

Wiederholung

Kapazität 𝐶 definiert als:

𝐶 = 𝑄
𝑈

Kondensator als Bauteil im Wechselstromkreis

Die Änderung der Ladung 𝑄 ist gegeben durch den Strom 𝑖:

𝑖 = 𝑑𝑄
𝑑𝑡 = 𝐶 ⋅ 𝑑𝑢

𝑑𝑡
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Kapazität

Grundgleichung:
𝑖 = 𝐶 ⋅ 𝑑𝑢

𝑑𝑡

Spannungs- und Stromverlauf:

𝑢 = ̂𝑈 ⋅ sin(𝜔 ⋅ 𝑡 + 𝜑𝑢)

𝑖 = ̂𝐼 ⋅ sin(𝜔 ⋅ 𝑡 + 𝜑𝑖)

Mit 𝑖 = 𝐶 ⋅ 𝑑𝑢
𝑑𝑡 folgt:

̂𝐼 ⋅ sin(𝜔 ⋅ 𝑡 + 𝜑𝑖) = 𝐶 ⋅ 𝑑( ̂𝑈 ⋅ sin(𝜔 ⋅ 𝑡 + 𝜑𝑢))
𝑑𝑡

= 𝐶 ⋅ 𝜔 ⋅ ̂𝑈 ⋅ cos(𝜔 ⋅ 𝑡 + 𝜑𝑢)

= 𝐶 ⋅ 𝜔 ⋅ ̂𝑈 ⋅ sin (𝜔 ⋅ 𝑡 + 𝜋
2 + 𝜑𝑢)

Kapazität - Eigenschaften

𝑢 = ̂𝑈 ⋅ sin(𝜔 ⋅ 𝑡 + 𝜑𝑢)

𝑖 = ̂𝐼 ⋅ sin(𝜔 ⋅ 𝑡 + 𝜑𝑖)

= 𝐶 ⋅ 𝜔 ⋅ ̂𝑈 ⋅ sin (𝜔 ⋅ 𝑡 + 𝜋
2 + 𝜑𝑢)

Bedingungen für die Gleichheit:

• Amplituden: ̂𝐼 = 𝐶 ⋅ 𝜔 ⋅ ̂𝑈 bzw. 𝑈̂
̂𝐼 = 1

𝜔⋅𝐶

• Phasen: 𝜑𝑖 = 𝜋
2 + 𝜑𝑢 bzw. 𝜑𝑢 − 𝜑𝑖 = −𝜋

2

→ Am Kondensator eilt der Strom der Spannung um 𝜋
2 voraus.
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Leistung am Kondensator

Momentanleistung (mit 𝜑𝑢 = 0 und 𝜑𝑖 = 𝜋
2 ):

𝑝(𝑡) = 𝑢(𝑡) ⋅ 𝑖(𝑡) = ̂𝑈 ⋅ sin(𝜔𝑡) ⋅ ̂𝐼 ⋅ sin (𝜔𝑡 + 𝜋
2 )

= ̂𝑈 ⋅ ̂𝐼 ⋅ sin(𝜔𝑡) ⋅ cos(𝜔𝑡) =
̂𝑈 ⋅ ̂𝐼
2 ⋅ sin(2𝜔𝑡)

= 𝑈eff ⋅ 𝐼eff ⋅ sin(2𝜔𝑡)

Leistung am Kondensator - Interpretation

Energiefluss:

• Positive Leistung: Aufladen des Kondensators
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• Negative Leistung: Entladung des Kondensators

Mittlere Leistung:

𝑝 = 1
𝑇 ⋅ ∫

𝑇

0
𝑝(𝑡) 𝑑𝑡 = 0

→ Blindwiderstand mit kapazitiver Blindleistung:

𝑄𝐶 = 𝑈eff ⋅ 𝐼eff

Induktivität

Grundgleichung (Selbstinduktion!):
𝑢 = 𝐿 ⋅ 𝑑𝑖

𝑑𝑡

Spannungs- und Stromverlauf:

𝑢 = ̂𝑈 ⋅ sin(𝜔 ⋅ 𝑡 + 𝜑𝑢)

𝑖 = ̂𝐼 ⋅ sin(𝜔 ⋅ 𝑡 + 𝜑𝑖)

Mit 𝑢 = 𝐿 ⋅ 𝑑𝑖
𝑑𝑡 folgt:

̂𝑈 ⋅ sin(𝜔 ⋅ 𝑡 + 𝜑𝑢) = 𝐿 ⋅ 𝜔 ⋅ ̂𝐼 ⋅ cos(𝜔 ⋅ 𝑡 + 𝜑𝑖)

= 𝐿 ⋅ 𝜔 ⋅ ̂𝐼 ⋅ sin (𝜔 ⋅ 𝑡 + 𝜋
2 + 𝜑𝑖)
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Induktivität - Eigenschaften

𝑢 = ̂𝑈 ⋅ sin(𝜔 ⋅ 𝑡 + 𝜑𝑢)

𝑖 = ̂𝐼 ⋅ sin(𝜔 ⋅ 𝑡 + 𝜑𝑖)

= 𝐿 ⋅ 𝜔 ⋅ ̂𝐼 ⋅ sin (𝜔 ⋅ 𝑡 + 𝜋
2 + 𝜑𝑖)

Bedingungen für Gleichheit:

• Amplituden: ̂𝑈 = 𝐿 ⋅ 𝜔 ⋅ ̂𝐼 bzw. 𝑈̂
̂𝐼 = 𝜔 ⋅ 𝐿

• Phasen: 𝜑𝑢 = 𝜋
2 + 𝜑𝑖 bzw. 𝜑𝑢 − 𝜑𝑖 = 𝜋

2

→ An der Induktivität eilt die Spannung dem Strom um 𝜋
2 voraus.

Leistung an der Induktivität

Momentanleistung (mit 𝜑𝑢 = 𝜋
2 und 𝜑𝑖 = 0):

𝑝(𝑡) = 𝑢(𝑡) ⋅ 𝑖(𝑡) = ̂𝑈 ⋅ sin (𝜔𝑡 + 𝜋
2 ) ⋅ ̂𝐼 ⋅ sin(𝜔𝑡)

= ̂𝑈 ⋅ ̂𝐼 ⋅ cos(𝜔𝑡) ⋅ sin(𝜔𝑡) =
̂𝑈 ⋅ ̂𝐼
2 ⋅ sin(2𝜔𝑡)

= 𝑈eff ⋅ 𝐼eff ⋅ sin(2𝜔𝑡)
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Leistung an der Induktivität – Interpretation

Energiefluss:

• Positive Leistung: Energie zum Aufbau des magnetischen Feldes
• Negative Leistung: Energie durch Abbau des magnetischen Feldes

Mittlere Leistung:

𝑝 = 1
𝑇 ⋅ ∫

𝑇

0
𝑝(𝑡) 𝑑𝑡 = 0

→ Blindwiderstand mit induktiver Blindleistung:

𝑄𝐿 = 𝑈eff ⋅ 𝐼eff
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Komplexe Darstellung der Wechselstromwiderstände

Impedanz & Admittanz

Impedanz (komplexer Widerstand):

𝑍 = 𝑈
𝐼 = 𝑈

𝐼 ⋅ 𝑒𝑗⋅(𝜑𝑢−𝜑𝑖)

Admittanz (komplexer Leitwert):

𝑌 = 𝐼
𝑈 = 𝐼

𝑈 ⋅ 𝑒−𝑗⋅(𝜑𝑢−𝜑𝑖) = 1
𝑍

Impedanz des ohmschen Widerstands

𝑈 = ̂𝑈 ⋅ 𝑒𝑗𝜔𝑡

𝐼 = ̂𝐼 ⋅ 𝑒𝑗𝜔𝑡

𝑍𝑅 =
̂𝑈
̂𝐼
= 𝑅

Impedanz der Kapazität

Strom eilt der Spannung um 𝜋
2 voraus:

𝑈 = ̂𝑈 ⋅ 𝑒𝑗𝜔𝑡
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𝐼 = ̂𝐼 ⋅ 𝑒𝑗(𝜔𝑡+ 𝜋
2 ) = ̂𝐼 ⋅ 𝑒𝑗𝜔𝑡 ⋅ 𝑒𝑗 𝜋

2

̂𝐼 = 𝜔 ⋅ 𝐶 ⋅ ̂𝑈

𝑍𝐶 = 𝑈
𝐼 = 1

𝜔 ⋅ 𝐶 ⋅ 𝑒−𝑗 𝜋
2 = −𝑗 1

𝜔 ⋅ 𝐶 = 𝑗𝑋𝐶

𝑋𝐶: kapazitiver Blindwiderstand

𝑌 𝐶 = 𝜔 ⋅ 𝐶 ⋅ 𝑒𝑗 𝜋
2 = 𝑗𝜔 ⋅ 𝐶 = 𝑗𝐵𝐶

𝐵𝐶: kapazitiver Blindleitwert

Impedanz der Induktivität

Spannung eilt dem Strom um 𝜋
2 voraus:

𝑈 = ̂𝑈 ⋅ 𝑒𝑗(𝜔𝑡+ 𝜋
2 ) = ̂𝑈 ⋅ 𝑒𝑗𝜔𝑡 ⋅ 𝑒𝑗 𝜋

2

𝐼 = ̂𝐼 ⋅ 𝑒𝑗𝜔𝑡

̂𝑈 = 𝜔 ⋅ 𝐿 ⋅ ̂𝐼

𝑍𝐿 = 𝑈
𝐼 = 𝜔 ⋅ 𝐿 ⋅ 𝑒𝑗 𝜋

2 = 𝑗𝜔 ⋅ 𝐿 = 𝑗𝑋𝐿

𝑋𝐿: induktiver Blindwiderstand

𝑌 𝐿 = 1
𝜔 ⋅ 𝐿 ⋅ 𝑒−𝑗 𝜋

2 = −𝑗 1
𝜔 ⋅ 𝐿 = 𝑗𝐵𝐿

𝐵𝐿: induktiver Blindleitwert

Zusammenfassung: Impedanzen und Admittanzen der Grundelemente

o. Widerstand R Kapazität C Induktivität L

Impedanz Z 𝑅 1
𝑗𝜔𝐶 = 𝑗𝑋𝐶 𝑗𝜔𝐿 = 𝑗𝑋𝐿
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o. Widerstand R Kapazität C Induktivität L

Admittanz Y 1
𝑅 = 𝐺 𝑗𝜔𝐶 = 𝑗𝐵𝐶

1
𝑗𝜔𝐿 = 𝑗𝐵𝐿
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Grundschaltungen linearer Wechselstromwiderstände

Serienschaltung R und L

Komplexe Maschenregel:

𝑈 = 𝑈𝑅 + 𝑈𝐿 = 𝑅 ⋅ 𝐼 + 𝑗𝜔𝐿 ⋅ 𝐼 = 𝑍 ⋅ 𝐼

Impedanz:
𝑍 = 𝑅 + 𝑗𝜔𝐿

Admittanz:
𝑌 = 1

𝑍 = 𝑅 − 𝑗𝜔𝐿
𝑅2 + 𝜔2𝐿2

Betrag und Phase:
𝑍 = √𝑅2 + (𝜔𝐿)2

𝜑 = arctan 𝜔𝐿
𝑅

Parallelschaltung R und L

Komplexe Knotenregel:

𝐼 = 𝐼𝑅 + 𝐼𝐿 = ( 1
𝑅 + 1

𝑗 ⋅ 𝜔 ⋅ 𝐿) ⋅ 𝑈 = 𝑌 ⋅ 𝑈

Admittanz:
𝑌 = 1

𝑅 + 1
𝑗 ⋅ 𝜔 ⋅ 𝐿 = 1

𝑅 − 𝑗 ⋅ 1
𝜔 ⋅ 𝐿

Impedanz:
𝑍 = 1

𝑌 = 𝜔 ⋅ 𝐿 ⋅ 𝑅 ⋅ (𝜔 ⋅ 𝐿 + 𝑗 ⋅ 𝑅)
𝑅2 + 𝜔2 ⋅ 𝐿2
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Betrag und Phase:
𝑍 = 1

√ 1
𝑅2 + 1

(𝜔⋅𝐿)2

, 𝜑 = arctan ( 𝑅
𝜔 ⋅ 𝐿)

Serienschaltung R und C

𝑈 = 𝑈𝑅 + 𝑈𝐶 = 𝑅 ⋅ 𝐼 + 1
𝑗 ⋅ 𝜔 ⋅ 𝐶 ⋅ 𝐼 = 𝑍 ⋅ 𝐼

Impedanz:
𝑍 = 𝑅 − 𝑗 1

𝜔𝐶

Admittanz:
𝑌 = 𝜔𝐶(𝜔𝐶𝑅 + 𝑗)

1 + 𝜔2𝐶2𝑅2

Betrag und Phase:

𝑍 = √𝑅2 + ( 1
𝜔𝐶 )

2
, 𝜑 = − arctan 1

𝜔𝐶𝑅

Parallelschaltung R und C

𝐼 = 𝐼𝑅 + 𝐼𝐶 = ( 1
𝑅 + 𝑗 ⋅ 𝜔 ⋅ 𝐶) ⋅ 𝑈

Admittanz:
𝑌 = 1

𝑅 + 𝑗 ⋅ 𝜔 ⋅ 𝐶

Impedanz:
𝑍 = 1

𝑌 = 𝑅 ⋅ (1 − 𝑗 ⋅ 𝜔 ⋅ 𝐶 ⋅ 𝑅)
1 + 𝜔2 ⋅ 𝐶2 ⋅ 𝑅2

Betrag und Phase:

𝑍 = 1
√ 1

𝑅2 + (𝜔 ⋅ 𝐶)2
, 𝜑 = − arctan(𝜔 ⋅ 𝐶 ⋅ 𝑅)

Übersichtstabelle Grundschaltungen
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Schaltung 𝑍 𝑌 ‖𝑍‖ 𝜑

R-L Serie 𝑍 = 𝑅 + 𝑗𝜔𝐿 𝑌 = 𝑅−𝑗𝜔𝐿
𝑅2+𝜔2𝐿2 𝑍 =

√𝑅2 + (𝜔𝐿)2
𝜑 = arctan 𝜔𝐿

𝑅

R-L Parallel 𝑍 = 𝜔𝐿𝑅(𝜔𝐿+𝑗𝑅)
𝑅2+𝜔2𝐿2 𝑌 = 1

𝑅 − 𝑗 1
𝜔𝐿 𝑍 = 1

√ 1
𝑅2 + 1

(𝜔𝐿)2
𝜑 = arctan 𝑅

𝜔𝐿

R-C Serie 𝑍 = 𝑅 − 𝑗 1
𝜔𝐶 𝑌 = 𝜔𝐶(𝜔𝐶𝑅+𝑗)

1+𝜔2𝐶2𝑅2 𝑍 =
√𝑅2 + ( 1

𝜔𝐶 )2
𝜑 =
− arctan 1

𝜔𝐶𝑅
R-C Parallel 𝑍 = 𝑅(1−𝑗𝜔𝐶𝑅)

1+𝜔2𝐶2𝑅2 𝑌 = 1
𝑅 + 𝑗𝜔𝐶 𝑍 = 1

√ 1
𝑅2 +(𝜔𝐶)2

𝜑 =
− arctan 𝜔𝐶𝑅
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Leistung bei Wechselstromverbrauchern

Rückblick: Leistung an R, L und C

Wir haben bereits gesehen:

Am Widerstand R:

• 𝑝 = 𝑈eff ⋅ 𝐼eff (Wirkleistung)
• Energie wird ständig verbraucht
• Keine Phasenverschiebung: 𝜑 = 0°

Am Kondensator C und an der Induktivität L:

• 𝑝 = 0 (Blindleistung)
• Energie pendelt zwischen Quelle und Feld
• Maximale Phasenverschiebung: 𝜑 = ±90°

Vom Spezialfall zum Allgemeinfall

Bisher betrachtet:

• Rein ohmsche Verbraucher (𝜑 = 0°)
• Rein reaktive Verbraucher (𝜑 = ±90°)

In der Praxis:

• Kombinationen aus R, L und C
• Beliebige Phasenverschiebung 0° < |𝜑| < 90°

Beispiele:

• Motor: R-L-Kombination mit 𝜑 ≈ 30°−60°
• Netzteil: R-C-Kombination

Der allgemeine Fall

Bisher: Ideale Bauteile (nur R, nur L, nur C)

In der Praxis: Kombinationen mit Phasenverschiebung 𝜑

Spannung und Strom:
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• 𝑢(𝑡) = ̂𝑈 ⋅ cos(𝜔𝑡)
• 𝑖(𝑡) = ̂𝐼 ⋅ cos(𝜔𝑡 − 𝜑)

Mit 𝜑 = 𝜑𝑢 − 𝜑𝑖

Frage: Wie berechnet man die Leistung bei beliebiger Phasenverschiebung?

Ziel: Vom Spezialfall (R, L, C einzeln) zum Allgemeinfall (beliebige Kombinationen)

Momentanleistung mit Phasenverschiebung

Die Momentanleistung bei beliebiger Phasenverschiebung:

𝑝(𝑡) = 𝑢(𝑡) ⋅ 𝑖(𝑡) = ̂𝑈 ⋅ ̂𝐼 ⋅ cos(𝜔𝑡) ⋅ cos(𝜔𝑡 − 𝜑)

Mit trigonometrischer Umformung (cos(𝑎) ⋅ cos(𝑏) = 1
2 [cos(𝑎 − 𝑏) + cos(𝑎 + 𝑏)]):

𝑝(𝑡) =
̂𝑈 ⋅ ̂𝐼
2 ⋅ [cos(𝜑) + cos(2𝜔𝑡 − 𝜑)]

Die Leistung hat einen konstanten und einen oszillierenden Anteil!

Zerlegung der Momentanleistung

Mit der Umformung cos(2𝜔𝑡 − 𝜑) = cos(2𝜔𝑡) cos(𝜑) + sin(2𝜔𝑡) sin(𝜑):

𝑝(𝑡) =
̂𝑈 ⋅ ̂𝐼
2 ⋅ cos(𝜑) ⋅ [1 + cos(2𝜔𝑡)] +

̂𝑈 ⋅ ̂𝐼
2 ⋅ sin(𝜑) ⋅ sin(2𝜔𝑡)

Mit Effektivwerten 𝑈 = 𝑈̂√
2 , 𝐼 = ̂𝐼√

2 :

𝑝(𝑡) = 𝑈 ⋅ 𝐼 ⋅ cos(𝜑)⏟⏟⏟⏟⏟
𝑃

⋅[1 + cos(2𝜔𝑡)] + 𝑈 ⋅ 𝐼 ⋅ sin(𝜑)⏟⏟⏟⏟⏟
𝑄

⋅ sin(2𝜔𝑡)

Die Leistung oszilliert mit doppelter Frequenz 2𝜔!

Allgemeine Definitionen

Aus der Zerlegung der Momentanleistung folgen die allgemeinen Definitionen:
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Wirkleistung:
𝑃 = 𝑈 ⋅ 𝐼 ⋅ cos(𝜑)

Blindleistung:
𝑄 = 𝑈 ⋅ 𝐼 ⋅ sin(𝜑)

Spezialfälle (Wiederholung):

• 𝜑 = 0° (nur R): 𝑃 = 𝑈 ⋅ 𝐼 , 𝑄 = 0
• 𝜑 = 90° (nur L): 𝑃 = 0, 𝑄 = 𝑈 ⋅ 𝐼
• 𝜑 = −90° (nur C): 𝑃 = 0, 𝑄 = −𝑈 ⋅ 𝐼

Wirkleistung P

Die Wirkleistung ist der zeitliche Mittelwert der Momentanleistung:

𝑃 = ⟨𝑝(𝑡)⟩ = 1
𝑇 ∫

𝑇

0
𝑢(𝑡) ⋅ 𝑖(𝑡) 𝑑𝑡

Allgemeine Formel:
𝑃 = 𝑈 ⋅ 𝐼 ⋅ cos 𝜑

wobei 𝑈 und 𝐼 die Effektivwerte sind.

Einheit: Watt [W]

Grenzfälle:

• 𝜑 = 0° (nur R): 𝑃 = 𝑈 ⋅ 𝐼 (maximal)
• 𝜑 = ±90° (nur L oder C): 𝑃 = 0

Wirkleistung: Bedeutung

Was ist Wirkleistung? - Die tatsächlich in Arbeit, Wärme oder Licht umgesetzte Leistung -
Nur der in Phase mit der Spannung schwingende Stromanteil trägt bei

An ohmschen Widerständen:
𝑃 = 𝑅 ⋅ 𝐼2

Praxisbeispiele:
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• Elektromotor: leistet mechanische Arbeit
• Heizung: erzeugt Wärme
• Glühbirne: erzeugt Licht

Blindleistung Q

Die Blindleistung beschreibt den oszillierenden Energiefluss:

𝑄 = 𝑈 ⋅ 𝐼 ⋅ sin 𝜑

Einheit: Voltampere reactive [var]

Physikalische Bedeutung:

Bei induktiven Verbrauchern (Motoren, Transformatoren): - 𝜑 > 0: 𝑄𝐿 > 0 (positiv) -
Energie wird im Magnetfeld gespeichert und wieder abgegeben

Bei kapazitiven Verbrauchern (Kondensatoren): - 𝜑 < 0: 𝑄𝐶 < 0 (negativ) - Energie wird im
elektrischen Feld gespeichert und wieder abgegeben

Blindleistung: Praktische Bedeutung

Problem: Blindleistung trägt nicht zur nutzbaren Leistung bei, belastet aber das Netz:

• Höhere Ströme in Leitungen und Transformatoren
• Erhöhte Verluste: 𝑃Verlust = 𝑅 ⋅ 𝐼2

• Spannungsabfälle im Netz

Beispiel: Motor ohne Last - Benötigt hauptsächlich 𝑄𝐿 zur Magnetisierung - Hohe Ströme →
Netzbelastung

Konsequenz: Industriekunden zahlen oft Strafgebühren bei hoher Blindleistung

Scheinleistung S

Die Scheinleistung ist das Produkt der Effektivwerte:

𝑆 = 𝑈 ⋅ 𝐼
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Sie beschreibt die Gesamtbelastung des Netzes.

Zusammenhang mit Wirk- und Blindleistung:

𝑆 = √𝑃 2 + 𝑄2

Einheit: Voltampere [VA]

Warum wichtig? - Generatoren, Transformatoren, Leitungen müssen für 𝑆 dimensioniert sein -
Nicht für 𝑃 !

Scheinleistung: Praxisbeispiel

Transformator mit 𝑆max = 10 kVA

Szenario 1: Idealer Verbraucher (cos 𝜑 = 1) - 𝑃 = 𝑆 = 10 kW nutzbare Leistung

Szenario 2: Schlechter Leistungsfaktor (cos 𝜑 = 0,7) - 𝑃 = 𝑆 ⋅ cos 𝜑 = 10 ⋅ 0,7 = 7 kW -
𝑄 = 𝑆 ⋅ sin 𝜑 ≈ 7,1 kvar

Verlust: 3 kW Wirkleistung durch Blindleistung!

Der Transformator ist voll ausgelastet (𝑆 = 10 kVA), liefert aber nur 70% nutzbare Leistung.
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Komplexe Scheinleistung

Motivation

Frage: Wie kann man Wirk- und Blindleistung gemeinsam darstellen?

Idee: Nutze die komplexe Darstellung!

Wir haben:

• Komplexe Spannung: 𝑈 = 𝑈 ⋅ 𝑒𝑗𝜑𝑢

• Komplexer Strom: 𝐼 = 𝐼 ⋅ 𝑒𝑗𝜑𝑖

Naiver Ansatz: 𝑈 ⋅ 𝐼 = 𝑈 ⋅ 𝐼 ⋅ 𝑒𝑗(𝜑𝑢+𝜑𝑖)

Problem: Die Phasen addieren sich → falsch!

Wir brauchen die Differenz 𝜑 = 𝜑𝑢 − 𝜑𝑖

Lösung: Konjugiert komplexer Strom 𝐼∗

Warum𝑈 ⋅ 𝐼∗?

Konjugiert komplexer Strom:
𝐼∗ = 𝐼 ⋅ 𝑒−𝑗𝜑𝑖

Produkt:
𝑈 ⋅ 𝐼∗ = 𝑈 ⋅ 𝑒𝑗𝜑𝑢 ⋅ 𝐼 ⋅ 𝑒−𝑗𝜑𝑖

= 𝑈 ⋅ 𝐼 ⋅ 𝑒𝑗(𝜑𝑢−𝜑𝑖)

= 𝑈 ⋅ 𝐼 ⋅ 𝑒𝑗𝜑

Jetzt stimmt’s! Die Phase ist 𝜑 = 𝜑𝑢 − 𝜑𝑖

In kartesischer Form:
𝑈 ⋅ 𝐼∗ = 𝑈 ⋅ 𝐼 ⋅ (cos 𝜑 + 𝑗 sin 𝜑)

= 𝑈 ⋅ 𝐼 ⋅ cos 𝜑 + 𝑗 ⋅ 𝑈 ⋅ 𝐼 ⋅ sin 𝜑

= 𝑃 + 𝑗𝑄
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Beispiel: RL-Reihenschaltung

Gegeben: RL-Reihenschaltung
𝑍 = 𝑅 + 𝑗𝜔𝐿

Spannung:
𝑈 = 𝑍 ⋅ 𝐼 = (𝑅 + 𝑗𝜔𝐿) ⋅ 𝐼

Komplexe Scheinleistung:

𝑆 = 𝑈 ⋅ 𝐼∗ = (𝑅 + 𝑗𝜔𝐿) ⋅ 𝐼 ⋅ 𝐼∗

Wichtig: 𝐼 ⋅ 𝐼∗ = |𝐼|2 = 𝐼2 ist reell!

𝑆 = 𝐼2 ⋅ (𝑅 + 𝑗𝜔𝐿) = 𝑅 ⋅ 𝐼2⏟
𝑃

+𝑗 ⋅ 𝜔𝐿 ⋅ 𝐼2⏟
𝑄

Realteil = Wirkleistung am Widerstand R

Imaginärteil = Blindleistung an der Induktivität L

Definition der komplexen Scheinleistung

Die komplexe Scheinleistung ist definiert als:

𝑆 = 𝑈 ⋅ 𝐼∗ = 𝑃 + 𝑗𝑄

In Polarform:
𝑆 = 𝑆 ⋅ 𝑒𝑗𝜑

mit:

• Betrag: 𝑆 = |𝑆| = √𝑃 2 + 𝑄2 (Scheinleistung)
• Phase: 𝜑 = 𝜑𝑢 − 𝜑𝑖 (Phasenwinkel)

Alternative Darstellungen:

𝑆 = 𝑍 ⋅ 𝐼2 = 𝑈2

𝑍∗
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Leistungsdreieck und Leistungsfaktor

Leistungsdreieck

Das Leistungsdreieck visualisiert den Zusammenhang

• Wirkleistung: 𝑃 = 𝑆 ⋅ cos 𝜑
• Blindleistung: 𝑄 = 𝑆 ⋅ sin 𝜑
• Scheinleistung: 𝑆 = √𝑃 2 + 𝑄2

• Phasenwinkel: tan 𝜑 = 𝑄
𝑃

S
Q

P

φ

Sc
hei
nle
istu
ng

Wirkleistung

B
lindleistung

Leistungsdreieck: Praxisbeispiel

Industriebetrieb:

• Wirkleistung: 𝑃 = 800 kW (Maschinen)
• Blindleistung: 𝑄 = 600 kvar (Motoren)

Berechnung der Scheinleistung:

𝑆 = √𝑃 2 + 𝑄2 = √8002 + 6002 = 1000 kVA

Phasenwinkel:
𝜑 = arctan 𝑄

𝑃 = arctan 600
800 ≈ 37°

Konsequenz: Der Transformator muss für 𝑆 = 1000 kVA ausgelegt sein, obwohl nur 𝑃 = 800 kW
genutzt werden!
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Leistungsfaktor cos φ

Der Leistungsfaktor gibt an, wie effizient die Scheinleistung genutzt wird:

𝜆 = cos 𝜑 = 𝑃
𝑆

Wertebereich:

• cos 𝜑 = 1: Ideal (rein ohmsch)
• 0 < cos 𝜑 < 1: Phasenverschiebung
• cos 𝜑 = 0: Rein reaktiv

Je höher, desto besser: weniger Strom, weniger Verluste

Leistungsfaktor: Typische Werte

Verschiedene Verbraucher:

Verbraucher cos � Bemerkung

Glühbirne � 1,0 Rein ohmsch
Heizung � 1,0 Rein ohmsch
Motor ohne Last � 0,3 Viel Magnetisierung
Motor Volllast � 0,85 Besser, aber nicht ideal
Transformator � 0,8–0,9 Streuinduktivität
Modernes Netzteil (PFC) > 0,95 Mit Kompensation

PFC = Power Factor Correction

Kostenaspekt: Warum cos φ wichtig ist

Industriekunden zahlen oft Strafgebühren bei cos 𝜑 < 0,9

Gründe: 1. Höhere Ströme → höhere Verluste im Netz (𝑃Verlust = 𝑅 ⋅ 𝐼2) 2. Größere
Anlagen nötig (Transformatoren, Generatoren) 3. Spannungsabfälle im Netz

Beispiel:

• Bei cos 𝜑 = 0,7 muss 𝐼 = 𝑃
𝑈⋅0,7 fließen

• Bei cos 𝜑 = 0,95 nur 𝐼 = 𝑃
𝑈⋅0,95
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• Stromreduktion um 26%!

Energieversorger fordern: cos 𝜑 > 0,9
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Blindleistungskompensation

Blindfaktor sin φ

Der Blindfaktor gibt den Anteil der Blindleistung an:

𝛽 = sin 𝜑 = 𝑄
𝑆

Zusammenhang mit Leistungsfaktor:

𝜆2 + 𝛽2 = cos2 𝜑 + sin2 𝜑 = 1

Bedeutung:

• Hoher Blindfaktor → viel Blindleistung
• Niedriger Blindfaktor → wenig Blindleistung

Ziel: Blindfaktor minimieren durch Kompensation

Blindleistungskompensation: Das Problem

Problem bei induktiven Verbrauchern (Motoren, Transformatoren): - Hohe Blindleistung
𝑄𝐿 > 0 - Niedriger Leistungsfaktor cos 𝜑 - Hohe Ströme belasten das Netz - Strafzahlungen
drohen

Lösung: Blindleistungskompensation

Idee: Kondensatoren parallel schalten - Kondensatoren: 𝑄𝐶 < 0 (kapazitive Blindleistung) -
Induktivität: 𝑄𝐿 > 0 (induktive Blindleistung) - 𝑄gesamt = 𝑄𝐿 + 𝑄𝐶 ≈ 0

Blindleistungskompensation: Berechnung

Gegeben:

• Wirkleistung: 𝑃
• Ursprünglicher Leistungsfaktor: cos 𝜑1
• Ziel-Leistungsfaktor: cos 𝜑2
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Ursprüngliche Blindleistung:
𝑄1 = 𝑃 ⋅ tan 𝜑1

Ziel-Blindleistung:
𝑄2 = 𝑃 ⋅ tan 𝜑2

Benötigte kapazitive Blindleistung:

𝑄𝐶 = 𝑄1 − 𝑄2 = 𝑃 ⋅ (tan 𝜑1 − tan 𝜑2)

Blindleistungskompensation: Praxisbeispiel

Betrieb mit:

• 𝑃 = 100 kW (Wirkleistung)
• cos 𝜑1 = 0,8 → 𝜑1 ≈ 37°

Ursprüngliche Werte:

• 𝑄𝐿 = 𝑃 ⋅ tan(37°) = 100 ⋅ 0,75 = 75 kvar
• 𝑆1 = 𝑃

cos 𝜑1
= 100

0,8 = 125 kVA
• 𝐼1 = 𝑆1

𝑈 = 125000
400 = 312 A (bei 400 V)

Ziel: cos 𝜑2 = 1 (vollständige Kompensation)

Benötigte Kondensatoren:
𝑄𝐶 = −75 kvar

Blindleistungskompensation: Ergebnis

Nach Kompensation (cos 𝜑 = 1): - 𝑄gesamt = 𝑄𝐿 + 𝑄𝐶 = 75 − 75 = 0 kvar - 𝑆2 = 𝑃 = 100 kVA -
𝐼2 = 100000

400 = 250 A

Verbesserungen:

• Stromreduktion: von 312 A auf 250 A → 20% weniger
• Scheinleistung: von 125 kVA auf 100 kVA → 20% weniger
• Verluste: ∝ 𝐼2 → 36% weniger Leitungsverluste!
• Keine Strafzahlungen mehr

Investition in Kondensatoren amortisiert sich schnell!
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Zusammenfassung: Wirk-, Blind- und Scheinleistung

Leistungsart Symbol Einheit Bedeutung

Wirkleistung 𝑃 W (Watt) Tatsächlich
umgesetzte/nutzbare
Leistung

Blindleistung 𝑄 var Pendelnde Leistung
(Auf-/Abbau von
Feldern)

Scheinleistung 𝑆 VA (Voltampere) Rechengröße (𝑈 ⋅ 𝐼), für
Dimensionierung

Zusammenhang:
𝑆 = √𝑃 2 + 𝑄2

Leistungsfaktor:
cos 𝜑 = 𝑃

𝑆
• Ziel: cos 𝜑 möglichst nahe bei 1 (idealerweise > 0,9)
• Maßnahme: Kompensation mit Kondensatoren

Wechselstrom: Niederspannung weltweit

220 V, 50 Hz

230 V, 50 Hz

240 V, 50 Hz

100 V, 60 Hz

110 V, 60 Hz

115 V, 60 Hz

120 V, 60 Hz

127 V, 60 Hz

220 V, 60 Hz

230 V, 60 Hz

240 V, 60 Hz

100 V, 50 Hz

110 V, 50 Hz

115 V, 50 Hz

127 V, 50 Hz

� Gruppenarbeit: Westinghouse vs. Edison reloaded

Mit Ihrem jetzigen Wissen über Wechselstrom und Gleichstrom, Wirkleistung und Blindleistung,
diskutieren Sie in Ihrer Gruppe die Vor- und Nachteile der beiden Stromsysteme.

• Edison �: Gleichstrom mit 110 V
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• Westinghouse �: Wechselstrom mit 110 V, auf längere Strecken transformiert auf > 1000 V

Hinweise:

• Leitungsverluste (inklusive möglicher Blindleistung)
• Sicherheit (Spannungshöhe, Isolation)
• Wirtschaftlichkeit (Infrastruktur, Transformatoren)

Zusatzfrage: würde die Entscheidung heute anders ausfallen?
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Drehstrom

• Grundlagen des Drehstromsystems
• Stern- und Dreieckspannung
• Symmetrische Verbraucher
• Leistung im Drehstromsystem

Drehstrom: Motivation

Warum Drehstrom?

• Effizientere Energieübertragung über große Entfernungen
• Höhere Leistung bei gleicher Leitermasse
• Einfache Erzeugung rotierender Magnetfelder für Motoren

Anwendungen von Drehstrom

Energieversorgung:

• Hochspannungsübertragung (110 kV, 380 kV)
• Verteilnetze (10 kV, 20 kV)
• Niederspannungsnetze (400 V)

Antriebstechnik:

• Asynchronmotoren in der Industrie
• Bahnantriebe
• Windkraftanlagen

Elektromobilität:

• Schnellladestationen (bis 350 kW)

Grundlagen des Drehstromsystems

Dreiphasensystem:

Ein Drehstromsystem besteht aus drei sinusförmigen Wechselspannungen gleicher
Amplitude und Frequenz, die um 120° phasenverschieben sind.
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Zeitfunktionen:
𝑢1(𝑡) = ̂𝑈 ⋅ sin(𝜔𝑡)

𝑢2(𝑡) = ̂𝑈 ⋅ sin(𝜔𝑡 − 120°)

𝑢3(𝑡) = ̂𝑈 ⋅ sin(𝜔𝑡 − 240°)

Komplexe Darstellung:
𝑈1 = 𝑈 ⋅ 𝑒𝑗⋅0°

𝑈2 = 𝑈 ⋅ 𝑒𝑗⋅(−120°)

𝑈3 = 𝑈 ⋅ 𝑒𝑗⋅(−240°)

Rotierende Leiterschleife im Magnetfeld

Prinzip der Wechselspannungserzeugung:

Eine rechteckige Leiterschleife (Fläche 𝐴) rotiert mit konstanter Winkelgeschwindigkeit 𝜔 in
einem homogenen Magnetfeld 𝐵⃗.

Magnetischer Fluss durch die Schleife:

Φ(𝑡) = 𝐵 ⋅ 𝐴 ⋅ cos(𝜔𝑡)

Induzierte Spannung (Faraday’sches Induktionsgesetz):

𝑢(𝑡) = −𝑑Φ
𝑑𝑡 = 𝐵 ⋅ 𝐴 ⋅ 𝜔 ⋅ sin(𝜔𝑡) = ̂𝑈 ⋅ sin(𝜔𝑡)

Amplitude: ̂𝑈 = 𝐵 ⋅ 𝐴 ⋅ 𝜔

Vom Wechselstrom zum Drehstrom

Eine Leiterschleife: Sinusförmige Wechselspannung

𝑢1(𝑡) = ̂𝑈 ⋅ sin(𝜔𝑡)

Drei Leiterschleifen um 120° versetzt:

Drei identische Wicklungen sind räumlich um jeweils 120° versetzt auf dem Rotor angeordnet.
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𝑢1(𝑡) = ̂𝑈 ⋅ sin(𝜔𝑡)

𝑢2(𝑡) = ̂𝑈 ⋅ sin(𝜔𝑡 − 120°)

𝑢3(𝑡) = ̂𝑈 ⋅ sin(𝜔𝑡 − 240°)

Ergebnis: Dreiphasiges Drehstromsystem

Erzeugung von Drehstrom

Drehstromgenerator:

Ein Drehstromgenerator hat drei um 120° versetzte Wicklungen, die sich in einem
rotierenden Magnetfeld befinden.

Funktionsprinzip:

• Rotor dreht sich mit konstanter Winkelgeschwindigkeit
• In jeder Wicklung wird eine Spannung induziert
• Die drei Spannungen sind zeitlich um 120° versetzt

Symmetrisches Dreiphasensystem

Aufbau:

• Drei Außenleiter (L1, L2, L3) – oft als Phasen bezeichnet
• Ein Neutralleiter (N) – auf Erdpotential
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Bezeichnungen:

• 𝑈1, 𝑈2, 𝑈3, 𝑈𝑌 : Sternspannung
• 𝑈𝑌 = |𝑈1| = |𝑈2| = |𝑈3|
• 𝑈12, 𝑈23, 𝑈31, 𝑈Δ: Dreieckspannung
• 𝑈Δ = |𝑈12| = |𝑈23| = |𝑈31|
• 𝐼1, 𝐼2, 𝐼3, 𝐼 : Außenleiterstrom
• 𝐼𝑁 : Strom im Neutralleiter

Maschengleichungen

Die Dreieckspannungen (Außenleiterspannungen) ergeben sich aus den Differenzen der
Sternspannungen:

𝑈12 = 𝑈1 − 𝑈2

𝑈23 = 𝑈2 − 𝑈3

𝑈31 = 𝑈3 − 𝑈1

Außerdem:

𝑈12 + 𝑈23 + 𝑈31 = 0

Zeigerdiagramm

Die Sternspannungen 𝑈1, 𝑈2, 𝑈3 sind um 120° versetzt.

Die Dreieckspannungen 𝑈12, 𝑈23, 𝑈31 ergeben sich als Differenzen.

Zusammenhang zwischen Stern- und Dreieckspannung:

𝑈Δ =
√

3 ⋅ 𝑈𝑌

(Grafische Herleitung)

Wichtig:

• Dreieckspannungen sind um 30° gegenüber den Sternspannungen gedreht
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• 𝑈Δ ≈ 1,73 ⋅ 𝑈𝑌

Herleitung der Beziehung

Gegeben: 𝑈1 = 𝑈𝑌 ⋅ 𝑒𝑗0°, 𝑈2 = 𝑈𝑌 ⋅ 𝑒−𝑗120°

Berechnung:
𝑈12 = 𝑈1 − 𝑈2 = 𝑈𝑌 ⋅ (𝑒𝑗0° − 𝑒−𝑗120°)

= 𝑈𝑌 ⋅ (1 − (−1
2 − 𝑗

√
3

2 ))

= 𝑈𝑌 ⋅ (3
2 + 𝑗

√
3

2 )

Betrag:

𝑈Δ = |𝑈12| = 𝑈𝑌 ⋅ √(3
2)2 + (

√
3

2 )2 = 𝑈𝑌 ⋅
√

3

Beispiel: Öffentliches Stromnetz

Niederspannungsnetz in Deutschland:

• Sternspannung (Phase gegen Neutralleiter):

𝑈𝑌 = 230 V

• Dreieckspannung (zwischen zwei Außenleitern):

𝑈Δ =
√

3 ⋅ 230 V ≈ 400 V

Haushalte:

• Einphasige Verbraucher: 230 V (L1-N, L2-N oder L3-N)
• Drehstromverbraucher: 400 V (L1-L2-L3)
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Symmetrische Verbraucher

Definition:

Alle drei Verbraucherstränge sind mit dem gleichen Widerstand 𝑍 belastet:

𝑍1 = 𝑍2 = 𝑍3 = 𝑍

Konsequenzen:

• Alle Ströme haben den gleichen Betrag
• Phasenverschiebung zwischen den Strömen: 120°
• Neutralleiterstrom ist null: 𝐼𝑁 = 0

Verbraucher in Sternschaltung

Eigenschaften:

• Strangströme = Außenleiterströme
• Strom durch Neutralleiter = 0 (bei symmetrischer Last)

𝐼Str = 𝐼 = 𝑈𝑌
𝑍

𝑈Str = 𝑈𝑌 = 𝑈Δ√
3

L1

L2

u1

u2

v2

v1

w2 w1400V

400V

400V

L3

Sternpunkt

46



Elektrotechnik – Straub Symmetrische Verbraucher

Verbraucher in Dreieckschaltung

Eigenschaften:

• Strangspannungen = Dreieckspannungen
• Zusammenhang zwischen Außenleiter- und Strangströmen:

𝑈Str = 𝑈Δ =
√

3 ⋅ 𝑈𝑌

𝐼Str = 𝑈Δ
𝑍 , 𝐼 =

√
3 ⋅ 𝐼Str

L1

L3

L2

u1

u2

v1

v2
w1

w2
400V

400V

400V

Vergleich Stern- und Dreieckschaltung

Übersichtstabelle:

Größe Sternschaltung Dreieckschaltung

Strangspannung𝑈Str = 𝑈𝑌 = 𝑈Δ√
3 𝑈Str = 𝑈Δ =

√
3 ⋅ 𝑈𝑌

Strangstrom 𝐼Str = 𝑈𝑌
𝑍 𝐼Str = 𝑈Δ

𝑍
Außenleiterstrom𝐼 = 𝐼Str 𝐼 =

√
3 ⋅ 𝐼Str

Neutralleiter Vorhanden (kann entfallen bei
symmetrischer Last)

Nicht vorhanden
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Leistung im Drehstromsystem

Leistung pro Strang

Für symmetrische Verbraucher:

Jeder der drei Stränge nimmt die gleiche Leistung auf.

Scheinleistung pro Strang:
𝑆Str = 𝑈Str ⋅ 𝐼Str

Wirkleistung pro Strang:
𝑃Str = 𝑈Str ⋅ 𝐼Str ⋅ cos(𝜑)

Blindleistung pro Strang:
𝑄Str = 𝑈Str ⋅ 𝐼Str ⋅ sin(𝜑)

wobei 𝜑 die Phasenverschiebung zwischen Strang-Spannung und Strang-Strom ist.

Gesamtleistung

Die Gesamtleistung ist die Summe der Leistungen aller drei Stränge:

Scheinleistung:
𝑆𝑔𝑒𝑠 = 3 ⋅ 𝑆Str = 3 ⋅ 𝑈Str ⋅ 𝐼Str

Wirkleistung:
𝑃𝑔𝑒𝑠 = 3 ⋅ 𝑃Str = 3 ⋅ 𝑈Str ⋅ 𝐼Str ⋅ cos(𝜑)

Blindleistung:
𝑄𝑔𝑒𝑠 = 3 ⋅ 𝑄Str = 3 ⋅ 𝑈Str ⋅ 𝐼Str ⋅ sin(𝜑)

Gilt für Stern- UND Dreieckschaltung!

Leistung in Sternschaltung

Gegeben:

• Sternspannung: 𝑈𝑌
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• Strangstrom = Außenleiterstrom: 𝐼Str = 𝐼

Gesamtleistung:
𝑆 = 3 ⋅ 𝑈𝑌 ⋅ 𝐼

Mit 𝑈𝑌 = 𝑈Δ√
3 folgt:

𝑆 = 3 ⋅ 𝑈Δ√
3 ⋅ 𝐼 =

√
3 ⋅ 𝑈Δ ⋅ 𝐼

Leistung in Dreieckschaltung

Gegeben:

• Dreieckspannung: 𝑈Δ
• Strangstrom: 𝐼Str = 𝐼√

3

Gesamtleistung:
𝑆 = 3 ⋅ 𝑈Δ ⋅ 𝐼Str = 3 ⋅ 𝑈Δ ⋅ 𝐼√

3 =
√

3 ⋅ 𝑈Δ ⋅ 𝐼

Allgemeine Leistungsformel

Für symmetrische Drehstromverbraucher gilt unabhängig von der Schaltungsart:

𝑆 =
√

3 ⋅ 𝑈Δ ⋅ 𝐼

𝑃 =
√

3 ⋅ 𝑈Δ ⋅ 𝐼 ⋅ cos(𝜑)

𝑄 =
√

3 ⋅ 𝑈Δ ⋅ 𝐼 ⋅ sin(𝜑)

wobei:

• 𝑈Δ: Dreieckspannung (Außenleiterspannung)
• 𝐼 : Außenleiterstrom
• 𝜑: Phasenverschiebung zwischen Strang-Spannung und Strang-Strom

Hinweis: Oft wird 𝑈Δ einfach als 𝑈 geschrieben.
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Drehstrom-Blindleistungskompensation

Problem: Drehstrommotoren haben oft einen niedrigen Leistungsfaktor (cos 𝜑 < 0,9).

Lösung: Kompensationskondensatoren in Stern- oder Dreieckschaltung

Kapazität bei Sternschaltung

Sternschaltung der Kondensatoren:

Am Kondensator liegt die Sternspannung 𝑈𝑌 an.

Blindleistung pro Kondensator:

𝑄𝐶,Str = 𝑈2
𝑌 ⋅ 𝜔 ⋅ 𝐶𝑌

Gesamte Blindleistung:
𝑄𝐶 = 3 ⋅ 𝑈2

𝑌 ⋅ 𝜔 ⋅ 𝐶𝑌

Benötigte Kapazität pro Kondensator:

𝐶𝑌 = 𝑄𝐶
3 ⋅ 𝑈2

𝑌 ⋅ 𝜔

Kapazität bei Dreieckschaltung

Dreieckschaltung der Kondensatoren:

Am Kondensator liegt die Dreieckspannung 𝑈Δ an.

Blindleistung pro Kondensator:

𝑄𝐶,Str = 𝑈2
Δ ⋅ 𝜔 ⋅ 𝐶Δ

Gesamte Blindleistung:
𝑄𝐶 = 3 ⋅ 𝑈2

Δ ⋅ 𝜔 ⋅ 𝐶Δ
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Benötigte Kapazität pro Kondensator:

𝐶Δ = 𝑄𝐶
3 ⋅ 𝑈2

Δ ⋅ 𝜔

Vergleich Stern- und Dreieckschaltung der Kondensatoren

In der Sternschaltung gilt 𝑈𝑌 = 𝑈Δ√
3 , also:

𝐶𝑌 = 𝑄𝐶
𝑈2

Δ ⋅ 𝜔 , 𝐶Δ = 𝑄𝐶
3 ⋅ 𝑈2

Δ ⋅ 𝜔

⇒ 𝐶𝑌 = 3 ⋅ 𝐶Δ

Interpretation:

• Bei Sternschaltung: höhere Kapazität erforderlich
• Bei Dreieckschaltung: niedrigere Kapazität, aber höhere Spannungsbelastung

Praxis:

• Sternschaltung bei höheren Spannungen (Spannungsbelastung nur 𝑈𝑌 )
• Dreieckschaltung bei niedrigeren Spannungen

Vorteile des Drehstromsystems

Gegenüber einphasigem Wechselstrom:

1. Effizientere Energieübertragung
• Bei gleicher Leistung geringere Leiterverluste
• Materialeinsparung bei Leitungen

2. Konstante Leistungsabgabe
• Summe der Momentanleistungen ist konstant
• Gleichmäßigerer Lauf von Motoren

3. Einfache Erzeugung von Drehfeldern
• Drehstrommotoren ohne Anlaufhilfe
• Robuster Aufbau
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Schaltvorgänge an Kapazitäten und Induktivitäten

• Einschaltvorgang und Ausschaltvorgang von Kapazitäten
• Einschaltvorgang und Ausschaltvorgang von Induktivitäten

Einschaltvorgang: Kondensator

Schalterstellung:

𝑢 =
⎧{
⎨{⎩

0 für 𝑡 ≤ 0
𝑈0 für 𝑡 > 0

Für t > 0 gilt (Maschengleichung):

𝑈0 = 𝑢𝑅 + 𝑢𝐶 = 𝑖 ⋅ 𝑅 + 𝑢𝐶 = 𝐶 ⋅ 𝑑𝑢𝐶
𝑑𝑡 ⋅ 𝑅 + 𝑢𝐶

Gesucht: 𝑢𝐶(𝑡)

Aufladevorgang: Lösung

Lösung der Differentialgleichung:

𝑢𝐶(𝑡) = 𝑈0 ⋅ (1 − 𝑒− 𝑡
𝜏 ) mit 𝜏 = 𝑅 ⋅ 𝐶 (7.1)

𝑖𝐶(𝑡) = 𝑈0
𝑅 ⋅ 𝑒− 𝑡

𝜏

Anfangs- und Endwerte:

• 𝑢𝐶(𝑡 = 0) = 0, 𝑢𝐶(𝑡 → ∞) = 𝑈0
• 𝑖𝐶(𝑡 = 0) = 𝑈0

𝑅 , 𝑖𝐶(𝑡 → ∞) = 0

Zeitkonstante: 𝜏 = 𝑅 ⋅ 𝐶

Ausschaltvorgang: Kondensator

Schalterstellung:

𝑢 =
⎧{
⎨{⎩

𝑈0 für 𝑡 ≤ 0
0 für 𝑡 > 0
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Für t > 0 gilt (Maschengleichung):

0 = 𝑢𝑅 + 𝑢𝐶 = 𝑖 ⋅ 𝑅 + 𝑢𝐶 = 𝐶 ⋅ 𝑑𝑢𝐶
𝑑𝑡 ⋅ 𝑅 + 𝑢𝐶

Entladevorgang: Lösung

Lösung der Differentialgleichung:

𝑢𝐶(𝑡) = 𝑈0 ⋅ 𝑒− 𝑡
𝜏 mit 𝜏 = 𝑅 ⋅ 𝐶 (7.2)

𝑖𝐶(𝑡) = −𝑈0
𝑅 ⋅ 𝑒− 𝑡

𝜏

Anfangs- und Endwerte:

• 𝑢𝐶(𝑡 = 0) = 𝑈0, 𝑢𝐶(𝑡 → ∞) = 0
• 𝑖𝐶(𝑡 = 0) = −𝑈0

𝑅 , 𝑖𝐶(𝑡 → ∞) = 0

Zeitkonstante: 𝜏 = 𝑅 ⋅ 𝐶

Einschaltvorgang: Induktivität

Schalterstellung:

𝑢 =
⎧{
⎨{⎩

0 für 𝑡 ≤ 0
𝑈0 für 𝑡 > 0

Für t > 0 gilt (Maschengleichung):

𝑈0 = 𝑢𝑅 + 𝑢𝐿 = 𝑖𝐿 ⋅ 𝑅 + 𝐿 ⋅ 𝑑𝑖𝐿
𝑑𝑡

Gesucht: 𝑖𝐿(𝑡)

Aufbau des Magnetfeldes: Lösung

Lösung der Differentialgleichung:

𝑖𝐿(𝑡) = 𝑈0
𝑅 ⋅ (1 − 𝑒− 𝑡

𝜏 ) mit 𝜏 = 𝐿
𝑅 (7.3)
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𝑢𝐿(𝑡) = 𝑈0 ⋅ 𝑒− 𝑡
𝜏

Anfangs- und Endwerte:

• 𝑖𝐿(𝑡 = 0) = 0, 𝑖𝐿(𝑡 → ∞) = 𝑈0
𝑅

• 𝑢𝐿(𝑡 = 0) = 𝑈0, 𝑢𝐿(𝑡 → ∞) = 0

Zeitkonstante: 𝜏 = 𝐿
𝑅

Ausschaltvorgang: Induktivität

Schalterstellung:

𝑢 =
⎧{
⎨{⎩

𝑈0 für 𝑡 ≤ 0
0 für 𝑡 > 0

Für t > 0 gilt (Maschengleichung):

0 = 𝑢𝑅 + 𝑢𝐿 = 𝑖𝐿 ⋅ 𝑅 + 𝐿 ⋅ 𝑑𝑖𝐿
𝑑𝑡

Abbau des Magnetfeldes: Lösung

Lösung der Differentialgleichung:

𝑖𝐿(𝑡) = 𝑈0
𝑅 ⋅ 𝑒− 𝑡

𝜏 mit 𝜏 = 𝐿
𝑅 (7.4)

𝑢𝐿(𝑡) = −𝑈0 ⋅ 𝑒− 𝑡
𝜏

Anfangs- und Endwerte:

• 𝑖𝐿(𝑡 = 0) = 𝑈0
𝑅 , 𝑖𝐿(𝑡 → ∞) = 0

• 𝑢𝐿(𝑡 = 0) = −𝑈0, 𝑢𝐿(𝑡 → ∞) = 0

Zeitkonstante: 𝜏 = 𝐿
𝑅

Beispiel 1: Kondensator-Entladung

Aufgabe:

Ein Kondensator 𝐶 = 0,1 𝜇F wird über einen Widerstand 𝑅 = 5 Ω entladen.
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In welcher Zeit 𝑡𝑥 ist die Spannung am Kondensator auf 10% des ursprünglichen Wertes gesunken?

Beispiel 2: Pufferkondensator

Aufgabe:

Der Datenspeicher eines Taschenrechners (Lastwiderstand 𝑅 = 2,2 MΩ) soll während des
Batteriewechsels aus einem Kondensator 𝐶 gespeist werden.

Gegeben:

• Batteriespannung: 𝑈𝐵 = 3 V
• Batteriewechselzeit: 𝑡𝑊 = 30 s
• Minimale Versorgungsspannung: 𝑈min = 0,8 V

Gesucht: Dimensionierung von 𝐶

Freilaufdioden

Problem bei Induktivitäten:

Beim Abschalten einer Spule mit Strom 𝐼 entsteht eine hohe Induktionsspannung
𝑢ind = −𝑢𝐿 = −𝐿 ⋅ 𝑑𝑖

𝑑𝑡

• Bei schnellem Abschalten können sehr hohe Spannungen entstehen
• Diese können Schaltkreise beschädigen (z.B. Transistoren, Relais)

Lösung: Freilaufdiode

• Parallel zur Induktivität wird eine Diode geschaltet
• Beim Abschalten kann der Strom durch die Diode weiterfließen
• Gespeicherte Energie wird kontrolliert abgebaut
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